Mathematical evaluation of behavioral deterrent systems to disrupt fish movement
D.P. Zielinski,
M. Hondzo and
V.R. Voller
Ecological Modelling, 2014, vol. 272, issue C, 150-159
Abstract:
Although behavioral deterrent systems, directed at exploiting fish sensory systems, are the common place in fisheries management, little is understood about the link between imposed sensory signals (e.g., sound intensity) and the resulting fish movements. Here, an advection–diffusion equation, incorporating a stimuli specific repulsive flux, is coupled with calculation of the generated stimulus field in order to model fish movement near a behavioral deterrent system. A stability analysis of this model is then used to determine the effectiveness of a deterrent stimulus to disrupt the natural movement of fish. Results of laboratory experiments of a bubble curtain to inhibit common carp, Cyprinus carpio, movement are used to develop the model and verify stability analysis predictions. This experimental data demonstrate that the acoustic stimulus (sound pressure levels) produced by bubble curtain systems can be sufficient to disrupt the natural movement of carp, i.e. inhibit fish passage. In addition, a sensitivity analysis is used to investigate how model stability is impacted by changes in movement behaviors (i.e. diffusion and advection rates). This coupling of a movement model and stability analysis could find general application in the assessment of behavioral deterrent systems, in particular at field sites where long term physical testing may be impractical.
Keywords: Behavioral deterrent systems; Bubble curtain; Modeling; Fish movement; Stability analysis (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380013004766
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:272:y:2014:i:c:p:150-159
DOI: 10.1016/j.ecolmodel.2013.10.009
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().