EconPapers    
Economics at your fingertips  
 

Can fish consumption rate estimates be improved by linking bioenergetics and mercury mass balance models? Application to tunas

Bridget E. Ferriss and Timothy E. Essington

Ecological Modelling, 2014, vol. 272, issue C, 232-241

Abstract: We developed an approach to estimate consumption rates by applying statistical methods to coupled bioenergetics and individual-based mercury (Hg) mass balance models, applied to bigeye (Thunnus obesus), yellowfin (Thunnus albacares), skipjack (Katsuwonus pelamis), and albacore (Thunnus alalunga) tunas. Direct measurement of consumption rates for these highly migratory species involves laborious and infrequent point estimates, while individual bioenergetics or contaminant-based models are biased by errors in parameter estimation due to a lack of data. We linked bioenergetics and Hg mass balance models by using consumption rate estimates produced from the former as inputs into the latter and determined whether the model could predict observed Hg-at-age. Consumption rate estimates derived from conventional bioenergetics and Hg mass balance models diverged considerably and the coupled bioenergetics-Hg mass balance model, based on default parameters, could not predict patterns of Hg accumulation. The statistical estimation approach (we found maximum likelihood estimates of metabolic expenditures related to swimming and the Hg concentration in tuna diets) generated biologically plausible daily consumption rates (yellowfin: 5.8–9%, skipjack: 4.5–6.7%, bigeye: 9.4–13% body weight for a 10kg tuna), but failed to fit the albacore Hg data. Statistically based methods that use patterns of Hg bioaccumulation hold promise to advance our ability to estimate consumption rates, but are limited by high variance in Hg-at-size data and uncertainty in prey Hg data.

Keywords: Tuna; Bioenergetics; Mercury; Consumption; Model; Pacific (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380013004778
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:272:y:2014:i:c:p:232-241

DOI: 10.1016/j.ecolmodel.2013.10.010

Access Statistics for this article

Ecological Modelling is currently edited by Brian D. Fath

More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecomod:v:272:y:2014:i:c:p:232-241