Extending the ROMUL model to simulate the dynamics of dissolved and sorbed C and N compounds in decomposing boreal mor
Hanne Laine-Kaulio,
Harri Koivusalo,
Alexander S. Komarov,
Mari Lappalainen,
Samuli Launiainen and
Ari Laurén
Ecological Modelling, 2014, vol. 272, issue C, 277-292
Abstract:
Organic matter (OM) decomposition plays a key role in maintaining the carbon (C) and nutrient balance of forest ecosystems. When including nutrients and C compounds in coupled soil water and solute transport models, decomposition needs to be explicitly quantified. To meet this requirement, we extended the ROMUL decomposition model with routines that describe: (i) the fractionation of the total C and nitrogen (N) released by ROMUL into their intermediate decomposition products and end products, (ii) the biodegradation of the intermediate decomposition products into the end products, and (iii) the adsorption/desorption of the compounds on the surfaces of OM. The resulting model was tested against data on the measured amounts of C and N compounds in soil water (dissolved concentrations) and in the extractable pool (total dissolved and sorbed amount) of mor samples during incubation in a laboratory. The parameterisation and structural competence of the model, as well as the quality of the underlying data, were analysed using the generalised likelihood uncertainty estimation (GLUE) procedure. Certain combinations of parameter values were found necessary to produce eligible simulation results due to a complex interplay of the model parameters. The model proved sensitive to most parameters, and the highest identification potential was found for parameters controlling the adsorption of high molecular weight organic C and N, the fractionation of total N into ammonium and organic N, and the biodegradation of high-molecular-weight organic N. The model was structurally compatible with the measured concentrations of different C and N compounds in soil water. The results demonstrate that reliable estimates of the extractable pools of C and N compounds are particularly important for the model. Additional data, as well as fixing the values for a subset of model parameters, would enhance the parameter identifiability and enable further analyses of the structural competence of the model.
Keywords: Forest soil; Mor; Carbon; Nitrogen; Decomposition model; Solute transport (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380013004687
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:272:y:2014:i:c:p:277-292
DOI: 10.1016/j.ecolmodel.2013.09.026
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().