EconPapers    
Economics at your fingertips  
 

A system dynamics approach to modelling multiple drivers of the African penguin population on Robben Island, South Africa

Florian Weller, Lee-Anne Cecchini, Lynne Shannon, Richard B. Sherley, Robert J.M. Crawford, Res Altwegg, Leanne Scott, Theodor Stewart and Astrid Jarre

Ecological Modelling, 2014, vol. 277, issue C, 38-56

Abstract: The African penguin (Spheniscus demersus) population in southern Africa has experienced rapid decline in the 20th century and as of 2010 is listed as “endangered” on the IUCN Red List. There is an urgent need for decision support tools to enable effective management of colonies. We present a system dynamics model of the penguin population on Robben Island, South Africa, that combines a demographic simulation with the modelling of multiple pressures including food availability and food competition by commercial fisheries, oil spills, predation by terrestrial and marine predators, and extreme climate events. The model is stochastic, stage-specific and resource-driven, and incorporates both well-defined, quantitative field data and qualitative expert opinion. Survival rates for eggs, chicks, immatures and adults were adapted from field data and an earlier model of this population to create a simulation of a stable population used in a variety of scenarios and sensitivity tests. The modelled population was found to be strongly driven by food availability and to a lesser degree by oiling and marine predation, while climate events and terrestrial predation had low impacts. Food biomass levels (small pelagic fish) in the penguins’ foraging area around the island (used during nesting) and further afield (used during the rest of the year) had an equal influence in driving population development in the short and long run. The impact of short-term (three years) fishing restrictions currently being trialled around the island was found to be generally beneficial to the modelled population, but easily masked by food-driven variability in population growth. The model produced population dynamics similar to those observed in 1988–2009 when immigration and a plausible change in predation pressure during this period were simulated. The model is being extended to other colonies to provide tools for specific management decisions and to enable the study of meta-populations by modelling migration between colonies. Our results suggest that improving food availability and mitigating the impact of oiling would have the highest beneficial impact on this penguin population.

Keywords: Spheniscus demersus; Southern Benguela; System dynamics; Demographic model; Conservation management (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380014000477
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:277:y:2014:i:c:p:38-56

DOI: 10.1016/j.ecolmodel.2014.01.013

Access Statistics for this article

Ecological Modelling is currently edited by Brian D. Fath

More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecomod:v:277:y:2014:i:c:p:38-56