EconPapers    
Economics at your fingertips  
 

Comparison of four light use efficiency models for estimating terrestrial gross primary production

Liang-Xia Zhang, De-Cheng Zhou, Jiang-Wen Fan and Zhong-Min Hu

Ecological Modelling, 2015, vol. 300, issue C, 30-39

Abstract: Light use efficiency (LUE) models that with different structures (i.e., methods to address environmental stresses on LUE) have been widely used to estimate terrestrial gross primary production (GPP) because of their theoretical soundness and practical conveniences. However, a systematic validation of those models with field observations across diverse ecosystems is still lacking and whether the model can be further improved by structural optimization remains unclear. Using GPP estimates at global 51 eddy covariance flux towers that cover a wide climate range and diverse vegetation types, we evaluated the performances of the four major LUE models (i.e., Carnegie-Ames-Stanford approach (CASA), Global Production Efficiency Model (GLO-PEM), Vegetation Photosynthesis Model (VPM), and Eddy Covariance-Light Use Efficiency (EC-LUE)) and examined the possible further improvement of the better-performed model(s) via model structural optimization. Our results showed that the GLO-PEM, VPM, and EC-LUE exhibited the similar capabilities in simulating GPP (explained around 68% of the total variations) and overall performed better than CASA (58%). Nevertheless, the EC-LUE and VPM were the optimal ones because they required less model inputs than the GLO-PEM. For the two optimal models, we found that the minimum method is better than the multiplication approach to integrate multiple environmental stresses on LUE. Moreover, we found that the VPM can be further improved by incorporating the constraint of water vapor deficit (VPDs). We suggested that a modified VPM by using minimum method and adding VPDs may be the best model in estimating large-scale GPP if high-quality remote sensing data available, otherwise, the modified models with the water stress reflected by VPDs only is optimal.

Keywords: Gross primary productivity; Remote sensing; MODIS; EVI; FluxNet; Eddy covariance (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380015000137
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:300:y:2015:i:c:p:30-39

DOI: 10.1016/j.ecolmodel.2015.01.001

Access Statistics for this article

Ecological Modelling is currently edited by Brian D. Fath

More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecomod:v:300:y:2015:i:c:p:30-39