The response of simulated grassland communities to the cessation of grazing
Lina Weiss and
Florian Jeltsch
Ecological Modelling, 2015, vol. 303, issue C, 1-11
Abstract:
Changes in land-use are supposed to be among the severest prospective threats to plant diversity world-wide. In semi-natural temperate grasslands, the cessation of traditional land use like livestock grazing is considered to be one of the most important drivers of the diversity loss witnessed within the last decades. Despite of the enormous number of studies on successional pathways following grazing abandonment there is no general pattern of how grassland communities are affected in terms of diversity, trait composition and pace of succession. To gain a comprehensive picture is difficult given the heterogeneity of environments and the time and effort needed for long-term investigations. We here use a proven individual- and trait-based grassland community model to analyze short- and long-term consequences of grazing abandonment under different assumptions of resource availability, pre-abandonment grazing intensity and regional isolation of communities.
Keywords: Diversity; Individual-based model; Land use intensity; Seed immigration; Abandonment; Resistance (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380015000587
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:303:y:2015:i:c:p:1-11
DOI: 10.1016/j.ecolmodel.2015.02.002
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().