The effects of constraining variables on parameter optimization in carbon and water flux modeling over different forest ecosystems
Min Liu,
Honglin He,
Xiaoli Ren,
Xiaomin Sun,
Guirui Yu,
Shijie Han,
Huimin Wang and
Guoyi Zhou
Ecological Modelling, 2015, vol. 303, issue C, 30-41
Abstract:
The ability of terrestrial biogeochemical models in predicting land-atmospheric carbon and water exchanges is largely hampered by the insufficient characterization of model parameters. The direct observations of carbon/water fluxes and the associated environmental variables from eddy covariance (EC) flux towers provide a notable opportunity to examine the underlying processes controlling carbon and water exchanges between terrestrial ecosystems and the atmosphere. In this study, we applied the Metropolis simulated annealing technique to conduct parameter optimization analyses of a process-based biogeochemical model, simplified PnET (SIPNET), using a variety of constraining variables from EC observations and leaf area index (LAI) from MODIS at three ChinaFLUX forest sites: a temperate mixed forest (CBS), a subtropical evergreen coniferous plantation (QYZ) and a subtropical evergreen broad-leaved forest (DHS). Our analyses focused on (1) identifying the key model parameters influencing the simulation of carbon and water fluxes with SIPNET; (2) evaluating how different combinations of constraining variables influence parameter estimations and associated uncertainties; and (3) assessing the model performance with the optimized parameterization in predicting carbon and water fluxes in the three forest ecosystems. Our sensitivity analysis indicated that, among three different forest ecosystems, the prediction of carbon and water fluxes was mostly affected by photosynthesis-related parameters. The performances of the model simulations depended on different parameterization schemes, especially the combinations of constraining variables. The parameterization scheme using both net ecosystem exchange (NEE) and evapotranspiration (ET) as constraining variables performed best with most well-constrained parameters. When LAI was added to the optimization, the number of well-constrained model parameters was increased. In addition, we found that the model cannot be well-parameterized with only growing-season observations, especially for those forest ecosystems with distinct seasonal variation. With the optimized parameterization scheme using both NEE and ET observations all year round, the SIPNET were able to simulate the seasonal and inter-annual variations of carbon and water exchanges in three forest ecosystems.
Keywords: Eddy covariance; Model data fusion; Parameter optimization; Forest ecosystems; SIPNET (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380015000460
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:303:y:2015:i:c:p:30-41
DOI: 10.1016/j.ecolmodel.2015.01.027
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().