Measuring sensitivity of robustness and network indices for an estuarine food web model under perturbations
Joyita Mukherjee,
Ursula M. Scharler,
Brian D. Fath and
Santanu Ray
Ecological Modelling, 2015, vol. 306, issue C, 160-173
Abstract:
Robustness is a universal feature of ecological systems which promotes sustainability over time. Robustness of an aquatic ecosystem, specifically an estuarine system, is investigated here using indicators derived from ecological network analysis. Estuaries provide us with many ecosystem services and these are consequently prone to face anthropogenic stresses. In South Africa, temporarily open/closed estuaries occupy a significant percentage of coastal boundaries. One of the South African estuaries, namely Mdloti, is studied here using network-based, Ecopath software. The estuarine energy flow networks are perturbed following different scenarios, which are assumed to be a result of selected anthropogenic stresses (eutrophication, overfishing) to the system. Several network indices such as total system throughput (TST), redundancy (R), Finn’s Cycling Index (FCI) and ascendency over development capacity ratio (A/C) are calculated and analyzed for the original field-based network and three perturbed networks under different scenarios (change of autotrophic biomass, fish yield, and detritus import). The change of ecosystem robustness from the unperturbed network is more pronounced in the perturbed networks of fish biomass change and detritus import than change in autotrophic biomass scenario. These indicators reliably reflected the relative change of flow pattern if any changes occur and magnitude in the networks in different scenarios. From the present study, we show that certain common network indices as mentioned above provide a measure of robustness and can be used for the assessment of ecosystem organization and function. ENA properties and also robustness change depending on the type and magnitude of stress imposed on the system.
Keywords: Network analysis; Ascendency; Development capacity; Redundancy; Perturbation; Mdloti estuary (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380014005006
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:306:y:2015:i:c:p:160-173
DOI: 10.1016/j.ecolmodel.2014.10.027
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().