EconPapers    
Economics at your fingertips  
 

A knowledge-and-data-driven modeling approach for simulating plant growth: A case study on tomato growth

Xing-Rong Fan, Meng-Zhen Kang, Ep Heuvelink, Philippe de Reffye and Bao-Gang Hu

Ecological Modelling, 2015, vol. 312, issue C, 363-373

Abstract: This paper proposes a novel knowledge-and-data-driven modeling (KDDM) approach for simulating plant growth that consists of two submodels. One submodel is derived from all available domain knowledge, including all known relationships from physically based or mechanistic models; the other is constructed solely from data without using any domain knowledge. In this work, a GreenLab model was adopted as the knowledge-driven (KD) submodel and the radial basis function network (RBFN) as the data-driven (DD) submodel. A tomato crop was taken as a case study on plant growth modeling. Tomato growth data sets from twelve greenhouse experiments over five years were used to calibrate and test the model. In comparison with the existing knowledge-driven model (KDM, BIC=1215.67) and data-driven model (DDM, BIC=1150.86), the proposed KDDM approach (BIC=1144.36) presented several benefits in predicting tomato yields. In particular, the KDDM approach is able to provide strong predictions of yields from different types of organs, including leaves, stems, and fruits, even when observational data on the organs are unavailable. The case study confirms that the KDDM approach inherits advantages from both the KDM and DDM approaches. Two cases of superposition and composition coupling operators in the KDDM approach are also discussed.

Keywords: Data-driven model; Knowledge-driven model; GreenLab; Knowledge-and-data-driven model; Model integration; Plant growth modeling (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380015002550
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:312:y:2015:i:c:p:363-373

DOI: 10.1016/j.ecolmodel.2015.06.006

Access Statistics for this article

Ecological Modelling is currently edited by Brian D. Fath

More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecomod:v:312:y:2015:i:c:p:363-373