Estimating the short-term recovery potential of little brown bats in the eastern United States in the face of White-nose syndrome
Robin E. Russell,
Wayne E. Thogmartin,
Richard A. Erickson,
Jennifer Szymanski and
Karl Tinsley
Ecological Modelling, 2015, vol. 314, issue C, 111-117
Abstract:
White-nose syndrome (WNS) was first detected in North American bats in New York in 2006. Since that time WNS has spread throughout the northeastern United States, southeastern Canada, and southwest across Pennsylvania and as far west as Missouri. Suspect WNS cases have been identified in Minnesota and Iowa, and the causative agent of WNS (Pseudogymnoascus destructans) has recently been detected in Mississippi. The impact of WNS is devastating for little brown bats (Myotis lucifugus), causing up to 100% mortality in some overwintering populations, and previous research has forecast the extirpation of the species due to the disease. Recent evidence indicates that remnant populations may persist in areas where WNS is endemic. We developed a spatially explicit model of little brown bat population dynamics to investigate the potential for populations to recover under alternative scenarios. We used these models to investigate how starting population sizes, potential changes in the number of bats overwintering successfully in hibernacula, and potential changes in demographic rates of the population post WNS may influence the ability of the bats to recover to former levels of abundance. We found that populations of the little brown bat and other species that are highly susceptible to WNS are unlikely to return to pre-WNS levels in the near future under any of the scenarios we examined.
Keywords: Disease ecology; Myotis lucifugus; Population modeling; Simulations; Uncertainty; White-nose syndrome (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380015003221
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:314:y:2015:i:c:p:111-117
DOI: 10.1016/j.ecolmodel.2015.07.016
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().