EconPapers    
Economics at your fingertips  
 

Incorporating deep uncertainty into the elementary effects method for robust global sensitivity analysis

Lei Gao () and Brett A. Bryan

Ecological Modelling, 2016, vol. 321, issue C, 1-9

Abstract: Internally-consistent scenarios are increasingly used in social–ecological systems modelling to explore how a complex system might be influenced by deeply uncertain future conditions such as climate, population, and demand and supply of resources and energy. The presence of deep uncertainty requires model diagnostic techniques such as global sensitivity analysis to provide reliable diagnostic insights that are robust to highly uncertain future conditions. We extended the elementary effects method of Morris, which is widely used to screen important model input factors at low computational cost, by incorporating deep uncertainty via the use of scenarios, and evaluated its potential as a robust global sensitivity analysis approach. We applied this robust elementary effects (rEE) method to the highly-parameterised Australian continental Land Use Trade-Offs (LUTO) model—a complex, non-linear model with strong interactions between parameters. We compared rEE sensitivity indicators with robust global sensitivity analysis (RGSA) indicators based on the variance-based eFAST method that imposes relatively high computational demand. We found that the rEE method provided a good approximation of the main effects and was effective in screening the most influential model parameters under deep uncertainty at a greatly reduced computational cost. However, the rEE method was not able to match the accuracy of the eFAST-based method in identifying the most influential parameters in the complex LUTO model based on their total effects. We conclude that the rEE method is well-suited for screening complex models, and possibly for efficient RGSA of models with weak interaction effects, but not for RGSA of complex models. Despite its limitations, rEE is a valuable addition to the robust global sensitivity analysis toolbox, helping to provide insights into model performance under deep uncertainty.

Keywords: eFAST; Land use; Scenarios; Futures; Global sensitivity analysis; Morris’ elementary effects (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380015004949
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:321:y:2016:i:c:p:1-9

DOI: 10.1016/j.ecolmodel.2015.10.016

Access Statistics for this article

Ecological Modelling is currently edited by Brian D. Fath

More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecomod:v:321:y:2016:i:c:p:1-9