Predicting how many animals will be where: How to build, calibrate and evaluate individual-based models
Elske van der Vaart,
Alice S.A. Johnston and
Richard M. Sibly
Ecological Modelling, 2016, vol. 326, issue C, 113-123
Abstract:
Individual-based models (IBMs) can simulate the actions of individual animals as they interact with one another and the landscape in which they live. When used in spatially-explicit landscapes IBMs can show how populations change over time in response to management actions. For instance, IBMs are being used to design strategies of conservation and of the exploitation of fisheries, and for assessing the effects on populations of major construction projects and of novel agricultural chemicals. In such real world contexts, it becomes especially important to build IBMs in a principled fashion, and to approach calibration and evaluation systematically. We argue that insights from physiological and behavioural ecology offer a recipe for building realistic models, and that Approximate Bayesian Computation (ABC) is a promising technique for the calibration and evaluation of IBMs.
Keywords: Energy budget; Individual-based models; Population dynamics; Approximate Bayesian Computation; Parameter estimation; Model selection (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380015003750
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:326:y:2016:i:c:p:113-123
DOI: 10.1016/j.ecolmodel.2015.08.012
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().