EconPapers    
Economics at your fingertips  
 

Hierarchical models for describing space-for-time variations in insect population size and sex-ratio along a primary succession

S. Tenan, C. Maffioletti, M. Caccianiga, C. Compostella, R. Seppi and M. Gobbi

Ecological Modelling, 2016, vol. 329, issue C, 18-28

Abstract: Chronosequences of glacier retreat are useful for investigating primary successions over time periods that are longer than direct observation would permit. In this context, space-for-time substitution studies have been applied to assess the effects of climate change on invertebrate assemblages. However, population dynamics of insect species following retreating glaciers has been under-investigated until now due to difficulty in applying capture-recapture methods and correctly identifying species in the field. Removal sampling methods are commonly used, but imperfect detectability is rarely accounted for in the analytical framework. In this paper we study the effects of environmental drivers of spatial, and indirectly temporal, variation in population size and sex-ratio of cold-adapted insects through a hierarchical framework for abundance. We show the importance of a metapopulation design, where samples are replicated in space and time, to model data from small and scattered populations, typically present in habitats with climate-mediated selective pressure like those along glacier forelands. This scattered distribution can influence the observation or sampling process and thus species detectability.

Keywords: Animal abundance; Carabids; Cold-adapted species; Detection probability; Removal sampling; Sex-ratio (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380016300229
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:329:y:2016:i:c:p:18-28

DOI: 10.1016/j.ecolmodel.2016.02.006

Access Statistics for this article

Ecological Modelling is currently edited by Brian D. Fath

More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecomod:v:329:y:2016:i:c:p:18-28