EconPapers    
Economics at your fingertips  
 

Carrying capacity simulations as a tool for ecosystem-based management of a scallop aquaculture system

Lotta C. Kluger, Marc H. Taylor, Jaime Mendo, Jorge Tam and Matthias Wolff

Ecological Modelling, 2016, vol. 331, issue C, 44-55

Abstract: Over the past decade, Sechura Bay has become an important center for mariculture in Peru, where the Peruvian bay scallop (Argopecten purpuratus) is grown in bottom cultures. Currently, the business involves 5000 artisanal fishermen and yields an export value of more than 158 million US$ per year. However, intensity and area extent of cultivation activities continue to increase. Overstocking of scallops combined with critical environmental changes may cause mass mortalities and severe consequences for the ecosystem. Accordingly, the ecosystem-based assessment of the current situation and the determination of long-term sustainable limits to scallop culture for the bay are crucial. Using a trophic food web model, the further expansion of culture activities is explored by forcing scallop biomass to increase to four different levels (458, 829, 1200, and 1572tkm−2) and the impact on other groups and the ecosystem are investigated. The ecological carrying capacity (ECC) is defined as the maximum amount of scallop biomass that would not yet cause any other group's biomass to fall below 10% of its original biomass. Results suggest that (a) the current magnitude of scallop bottom culture (147.4tkm−2) does not yet exceed ECC, (b) phytoplankton availability does not represent a critical factor for culture expansion, (c) a further increase in scallop biomass may cause scallop predator biomasses to increase, representing in turn a top−down control on other groups of the system, and (d) exceeding scallop biomass levels of 458tkm−2 may cause other functional groups biomasses to fall below the 10% threshold. The applicability and potential of the here presented ECC simulations as an ecosystem-based approach to sustainable bivalve culture are discussed. Results of this study are expected to guide both local fishers and managers in their challenging task of finding sustainable long-term levels for this important socio-economic activity in Sechura Bay.

Keywords: Ecological carrying capacity; Bivalve bottom culture; Ecosystem-based management; Trophic modeling (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380015003919
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:331:y:2016:i:c:p:44-55

DOI: 10.1016/j.ecolmodel.2015.09.002

Access Statistics for this article

Ecological Modelling is currently edited by Brian D. Fath

More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecomod:v:331:y:2016:i:c:p:44-55