EconPapers    
Economics at your fingertips  
 

Response to comments on “Uncertainty principle in niche assessment: A solution to the dilemma redundancy vs. competitive exclusion, and some analytical consequences”

Ricardo A. Rodríguez, Ada M. Herrera, Janelle Duncan, Rodrigo Riera, Ángel Quirós, María E. Perdomo, Antonia Jiménez-Rodríguez, José María Fernández-Palacios, Michael J. Vanni, Rüdiger Otto, Carlos G. Escudero, Tomás Camarena, Rafael M. Navarro-Cerrillo, Juan D. Delgado and María J. González

Ecological Modelling, 2016, vol. 341, issue C, 1-4

Abstract: The influence of quantum ecological uncertainty (QEU: a discrete statistical trade-off between the standard deviations of species diversity and energy, two indicators that are essential to define the ecological niche of every species), has been proposed as a plausible explanation to the debate between the competitive exclusion principle (CEP) and the hypothesis of functional redundancy (HFR). The debate CEP↔HFR is a manifestation of the wide spectrum of issues connected with a very important problem in ecology: the so-called “biodiversity paradox” (i.e.: How is it possible that so many species can coexist despite the underlying influence of interspecific competition?). Any testable theoretical alternative to explain species coexistence depends on an accurate assessment of the ecological niche in practice. However, under QEU, the assessment of ecological niche cannot be as accurate as we want due to an objective limitation of nature: the above-mentioned trade-off. Consequently, it is nonsense following the debate about this topic in the conventional way; it is necessary to change our traditional point of view about this issue in order to develop a non-conventional interpretation of ecosystem functioning. However, QEU has been strongly criticized in a recently published article. This article is devoted to clarify certain misunderstandings whose nature is evident by reading the above-mentioned criticism and its precursory publications in comparison with the spectrum of articles that supports QEU. The general fulfillment of QEU has also been questioned by the above-mentioned criticism, so it is additionally supported in this article by a noticeably abbreviated inclusion of results from field data, surveyed under different circumstances in comparison with previous data, from two inland water taxocenes (zooplankton rotifers and crustaceans, Acton Lake, Ohio, U.S.A.) to which this model has not been applied so far. Our general conclusion is that the criticism to QEU has been groundlessly proposed due to epistemological inaccuracies; fragmentary understanding about the principles connected with QEU; as well as an incomplete literature review.

Keywords: Ecological state equation; Biomass-dispersal trade-off; Competitive exclusion principle; Ecological niche; Ecosystem ecology; Quantum ecological uncertainty (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380016304252
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:341:y:2016:i:c:p:1-4

DOI: 10.1016/j.ecolmodel.2016.09.014

Access Statistics for this article

Ecological Modelling is currently edited by Brian D. Fath

More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecomod:v:341:y:2016:i:c:p:1-4