Novel methods to select environmental variables in MaxEnt: A case study using invasive crayfish
Yiwen Zeng,
Bi Wei Low and
Darren C.J. Yeo
Ecological Modelling, 2016, vol. 341, issue C, 5-13
Abstract:
The popularity of MaxEnt in species distribution modeling has been driven by several factors including its high degree of accuracy, and flexibility to tailor efforts to species-specific situations. Although many recent studies have identified the importance of adjusting mathematical transformation (feature class) and regularization of coefficient values, collectively known as tuning, few studies have addressed the need to customize the variables used in species distribution modeling, and use unselected variable sets. This study presents two novel methods to select for environmental variables in MaxEnt. The first involves selecting from a priori determined environmental variable sets (pre-selected based on ecological or biological knowledge), and the second utilizes a reiterative process of model formation and stepwise removal of least contributing variables. Both methods were tested on eight known species of invasive crayfish, with results reinforcing the need for species-specific environmental variable sets. While the reiterative process generally performs better than the a priori selected variables, selection of method can be based on information availability. These techniques appear to outperform the current practice of utilizing unselected variable sets and is especially important considering the increasing application of species distribution modeling (across spatial and temporal barriers) in conservation and management efforts whereby inaccurate predictions might have adverse effects.
Keywords: Tuning; Stepwise removal; A priori; Distribution; Ecological niche; Species distribution model (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380016304665
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:341:y:2016:i:c:p:5-13
DOI: 10.1016/j.ecolmodel.2016.09.019
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().