Cross-scale modeling of a vector-borne disease, from the individual to the metapopulation: The seasonal dynamics of sylvatic plague in Kazakhstan
Vincent Laperrière,
Katharina Brugger and
Franz Rubel
Ecological Modelling, 2016, vol. 342, issue C, 34-48
Abstract:
Individual-based or population-level simulation approaches are often employed alternatively in eco-epidemiological modeling. In this paper, we introduce an original coupling approach applied to bubonic plague zoonotic infection in the Pre-Balkhash focus (central Asia), with main host Rhombomys opimus (Rodentia: Gerbillidae) and vector its associated ectoparasite flea Xenopsylla gerbilli minax. An Individual-Based Model (IBM) is first developed as a Multi-Agent System (MAS), addressing the seasonally forced internal dynamics of a typical burrow system based upon individual processes and interaction rules of the host-vector parasitoid system. Key population parameters and incidence functions are derived from simulations on the IBM and introduced in a second stochastic Population-Level Model (PLM), operating at the level of a metapopulation composed of interacting communities occupying burrow systems. The methodology facilitates knowledge integration and encourages bridging scales at which determinant contagion processes occur. Through simulations, we bring new insights about conditions for the local persistence of plague in a seasonally constrained environment. Under the seasonal scenario where half of the fleas overwinter in an active state, the introduction of the plague pathogen in spring in a metapopulation composed of 20 communities leads in one case out of two to epizootics surviving the first winter, while the infection has a 5% chance of passing the second winter. If the metapopulation is extended to 70 communities, simulations suggest the same 5% chance is estimated for plague persisting almost 4 years. Optimal vector community sizes or host dispersal intensities for the persistence of epizootics are also highlighted by sensitivity analyses.
Keywords: Individual-based modeling; Compartmental modeling; Metapopulation; Plague epidemics; Seasonal forcing; Stochastic simulations (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380016304902
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:342:y:2016:i:c:p:34-48
DOI: 10.1016/j.ecolmodel.2016.09.023
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().