Simulations of populations of Sapajus robustus in a fragmented landscape
F. Keesen,
A. Castro e Silva,
E. Arashiro and
C.F.S. Pinheiro
Ecological Modelling, 2017, vol. 344, issue C, 38-47
Abstract:
The study of populations subject to the phenomenon of loss and fragmentation of habitat, transforming continuous areas into small ones, usually surrounded by anthropogenic matrices, has been the focus of many researches within the scope of conservation. The objective of this study was to develop a computer model by introducing modifications to the renowned Penna model for biological aging, in order to evaluate the behavior of populations subjected to the effects of fragmented environments. As an object of study, it was used biological data of the robust tufted capuchin (Sapajus robustus), an endangered primate species whose geographical distribution within the Atlantic Rain Forest is part of the backdrop of intense habitat fragmentation. The simulations showed the expected behavior based on the three main aspects that affects populations under intense habitat fragmentation: the population density, area and conformation of the fragments and deleterious effects due the low genetic variability in small and isolated populations. The model showed itself suitable to describe changes in viability and population dynamics of the species crested capuchin considering critical levels of survival in a fragmented environment and also, actions in order to preserve the species should be focused not only on increasing available area but also in dispersion dynamics.
Keywords: Computer modeling; Habitat fragmentation; Penna model (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380016306627
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:344:y:2017:i:c:p:38-47
DOI: 10.1016/j.ecolmodel.2016.11.003
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().