EconPapers    
Economics at your fingertips  
 

Time to fly: A comparison of marginal value theorem approximations in an agent-based model of foraging waterfowl

Matt L. Miller, Kevin M. Ringelman, John M. Eadie and Jeffrey C. Schank

Ecological Modelling, 2017, vol. 351, issue C, 77-86

Abstract: One of the fundamental decisions foragers face is how long an individual should remain in a given foraging location. Typical approaches to modeling this decision are based on the marginal value theorem. However, direct application of this theory would require omniscience regarding food availability. Even with complete knowledge of the environment, foraging with intraspecific competition requires resolution of simultaneous circular dependencies. In response to these issues in application, a number of approximating algorithms have been proposed, but it remains to be seen whether these algorithms are effective given a large number of foragers with realistic characteristics. We implemented several algorithms approximating marginal value foraging in a large-scale avian foraging model and compared the results. We found that a novel reinforcement-learning algorithm that includes cost of travel is the most effective algorithm that most closely approximates marginal value foraging theory and recreates depletion patterns observed in empirical studies.

Keywords: Optimal foraging theory; Decision-making; Algorithm; Simulation (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380016303180
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:351:y:2017:i:c:p:77-86

DOI: 10.1016/j.ecolmodel.2017.02.013

Access Statistics for this article

Ecological Modelling is currently edited by Brian D. Fath

More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecomod:v:351:y:2017:i:c:p:77-86