Minimizing effects of methodological decisions on interpretation and prediction in species distribution studies: An example with background selection
Catherine S. Jarnevich,
Marian Talbert,
Jeffery Morisette,
Cameron Aldridge,
Cynthia S. Brown,
Sunil Kumar,
Daniel Manier,
Colin Talbert and
Tracy Holcombe
Ecological Modelling, 2017, vol. 363, issue C, 48-56
Abstract:
Evaluating the conditions where a species can persist is an important question in ecology both to understand tolerances of organisms and to predict distributions across landscapes. Presence data combined with background or pseudo-absence locations are commonly used with species distribution modeling to develop these relationships. However, there is not a standard method to generate background or pseudo-absence locations, and method choice affects model outcomes. We evaluated combinations of both model algorithms (simple and complex generalized linear models, multivariate adaptive regression splines, Maxent, boosted regression trees, and random forest) and background methods (random, minimum convex polygon, and continuous and binary kernel density estimator (KDE)) to assess the sensitivity of model outcomes to choices made. We evaluated six questions related to model results, including five beyond the common comparison of model accuracy assessment metrics (biological interpretability of response curves, cross-validation robustness, independent data accuracy and robustness, and prediction consistency). For our case study with cheatgrass in the western US, random forest was least sensitive to background choice and the binary KDE method was least sensitive to model algorithm choice. While this outcome may not hold for other locations or species, the methods we used can be implemented to help determine appropriate methodologies for particular research questions.
Keywords: Species distribution modeling; Habitat modeling; Niche modeling; Correlative models; Maxent; Boosted regression trees; Random forest; GLM; Background data (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380016308213
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:363:y:2017:i:c:p:48-56
DOI: 10.1016/j.ecolmodel.2017.08.017
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().