EconPapers    
Economics at your fingertips  
 

Population dynamics of mutualism and intraspecific density dependence: How θ-logistic density dependence affects mutualistic positive feedback

Christopher M. Moore, Samantha A. Catella and Karen C. Abbott

Ecological Modelling, 2018, vol. 368, issue C, 191-197

Abstract: Mutualism describes the biological phenomenon where two or more species are reciprocally beneficial, regardless of their ecological intimacy or evolutionary history. Classic theory shows that mutualistic benefit must be relatively weak, or else it overpowers the stabilizing influence of intraspecific competition and leads to unrealistic, unbounded population growth. Interestingly, the conclusion that strong positive interactions lead to runaway population growth is strongly grounded in the behavior of a single model. This model—the Lotka–Volterra competition model with a sign change to generate mutualism rather than competition between species—assumes logistic growth of each species plus a linear interaction term to represent the mutualism. While it is commonly held that the linear interaction term is to blame for the model's unrealistic behavior, we show here that a linear mutualism added to a θ-logistic model of population growth can prevent unbounded growth. We find that when density dependence is decelerating, the benefit of mutualism at equilibrium is greater than when density dependence is accelerating. Although there is a greater benefit, however, decelerating density dependence tends to destabilize populations whereas accelerating density dependence is always stable. We interpret these findings tentatively, but with promise for the understanding of the population ecology of mutualism by generating several predictions relating growth rates of mutualist populations and the strength of mutualistic interaction.

Keywords: Mutualism; Population dynamics; Density dependence; Lotka–-Volterra; θ-Logistic (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380017304775
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:368:y:2018:i:c:p:191-197

DOI: 10.1016/j.ecolmodel.2017.11.016

Access Statistics for this article

Ecological Modelling is currently edited by Brian D. Fath

More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecomod:v:368:y:2018:i:c:p:191-197