Economics at your fingertips  

A hierarchical modelling framework for assessing physical and biochemical characteristics of a regulated river

Andrew W. Tranmer, Clelia L. Marti, Daniele Tonina, Rohan Benjankar, Dana Weigel, Leticia Vilhena, Claire McGrath, Peter Goodwin, Matthew Tiedemann, Jim Mckean and Jörg Imberger

Ecological Modelling, 2018, vol. 368, issue C, 78-93

Abstract: Regulated rivers below dams have traditionally been managed using a minimum instream flow to provide adequate aquatic habitat. However, dam management, in conjunction with changes in climate and land use, challenges downstream ecosystem functions that cannot be properly addressed by a simple minimum flow requirement. Depending upon the river system, additional parameters such as water temperature and nutrient loading provide more critical ecological value for organisms than ensuring a constant minimum release. A new modelling methodology, utilizing a cascading hierarchical approach, is proposed and tested on a 614km2 headwater basin in central Idaho, USA. Application of the methodology illustrates that below large dams the river discharge becomes independent of the seasonal hydrology and specifying the discharge alone is insufficient for evaluating ecosystem response. Upstream reservoirs interrupt the watershed continuum and internally modify the thermal, chemical, and biological properties of water prior to release into a downstream river. These water properties depend on the annual hydrologic regime, characteristics of the reservoir and the offtake strategies, offtake structure depth, dam discharge, and the water column thermal stratification. This study describes the use of climatically driven hydrologic forcing and variable dam operations in a coupled reservoir-river system to optimize river ecosystem health by linking physical processes with in situ observations and incorporating multi-trophic species requirements. Such an approach can support real-time decision making on existing reservoir-river systems and provide a virtual means of evaluating ecosystem impacts prior to disturbance from new dam construction or implementation of restoration activities in a watershed.

Keywords: Reservoir-river ecosystem; AEM3D; MIKE 11; Hydrologic regimes; Water operations (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this article

Ecological Modelling is currently edited by Brian D. Fath

More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Dana Niculescu ().

Page updated 2018-05-05
Handle: RePEc:eee:ecomod:v:368:y:2018:i:c:p:78-93