Modeling and simulation of tree spatial patterns in an oak-hickory forest with a modular, hierarchical spatial point process framework
Andrew J. Lister and
Laura P. Leites
Ecological Modelling, 2018, vol. 378, issue C, 37-45
Abstract:
Modeling and simulating tree spatial distribution in complex forests is important to ecologists and applied scientists who seek to both understand pattern-creating biological processes and create realistic model forests that can be used for hypothesis testing and sampling experiments. Several patterns of tree spatial distribution can co-occur in a forest. Clustering can occur due to localized patterns of growth and mortality of larger trees and corresponding regeneration of smaller trees, while trees of medium size can exhibit more uniform patterns. Inter-tree interaction may be characterized by asymmetry of competitive strength, with larger individuals having a disproportionate influence on smaller individuals.
Keywords: Point process models; Hierarchical models; Spatial patterns; Competition; Facilitation (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380018301108
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:378:y:2018:i:c:p:37-45
DOI: 10.1016/j.ecolmodel.2018.03.012
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().