Intermediate foraging large herbivores maintain semi-open habitats in wilderness landscape simulations
Kiowa Alraune Schulze,
Gert Rosenthal and
Alexander Peringer
Ecological Modelling, 2018, vol. 379, issue C, 10-21
Abstract:
In the context of the rewilding Europe debate, the German national strategy on biodiversity aims to dedicate two percent of the German state area to wilderness development until 2020. Many of these potential large wilderness reserves harbor open habitats that require protection according to the Flora-Fauna-Habitat-directive of the European Union. As forests prevail in potential natural vegetation, research is required, to which extent wild large herbivores and natural disturbances may create semi-open landscape patterns in the long-term. We used the spatially explicit process-based model of pasture-woodland ecosystem dynamics WoodPaM, to analyze the long-term interactions between intermediate foraging large wild herbivores and vegetation dynamics in edaphically heterogeneous forest-grassland mosaic landscapes. We newly implemented a routine for intermediate foraging herbivores. We determined herbivore impact on vegetation from the quantitative balance between the demand and supply of herbaceous forage and woody browse. In abstract landscapes that represent the conditions in the established German wilderness area "Döberitzer Heide", we simulated potential future landscape dynamics on open land, in forest and along forest edges with and without intermediate foraging large herbivores and for a climate change scenario.
Keywords: Rewilding; Long-term vegetation dynamics; Natural mosaic landscape; Spatially explicit simulation (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380018301133
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:379:y:2018:i:c:p:10-21
DOI: 10.1016/j.ecolmodel.2018.04.002
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().