Connectivity among wetlands matters for vulnerable amphibian populations in wetlandscapes
Patrizia Zamberletti,
Marta Zaffaroni,
Francesco Accatino,
Irena F. Creed and
Carlo De Michele
Ecological Modelling, 2018, vol. 384, issue C, 119-127
Abstract:
Wetlands have been degraded and destroyed, resulting in the decline of many wetland-dependent species populations. Many conservation efforts are based on protection of individual wetlands; however, fluxes of energy, materials and organisms between wetlands create important structural and functional connections upon which several species depend. We investigated the role of individual wetlands within a wetlandscape in sustaining an amphibian population. Wetlandscapes were represented as networks, where nodes were wetlands and links were flows of organisms described by an amphibian population model. Relationships between a wetland’s connectivity to the other wetlands and the abundance of amphibians under different wetland management strategies were examined. The first finding was that wetlands within a network can be classified into sinks (where local mortality exceeds birth rate), sources (where local birth rate exceeds mortality), and pseudo-sinks (where excessive immigration maintains the population above the carrying capacity). These three wetland classes have low, medium, and high Indegree (a parameter reflecting a wetland’s connectivity), respectively. The second finding was that management interventions in wetlands have different consequences according to the wetland’s Indegree: wetland removal has the worst impact on amphibian populations if the wetland is a source, and wetland restoration has the best impact if the wetland is a pseudo-sink. These findings provide support for policies that managing wetlands not as independent objects but as integral parts of the wetlandscape.
Keywords: Connectivity; Ecological network; Wetland configuration; Amphibian model; Graph theory; Population dynamics (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380018301686
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:384:y:2018:i:c:p:119-127
DOI: 10.1016/j.ecolmodel.2018.05.008
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().