EconPapers    
Economics at your fingertips  
 

Quantifying population-level effects of water temperature, flow velocity and chemical-induced reproduction depression: A simulation study with smallmouth bass

Yan Li, Vicki S. Blazer and Tyler Wagner

Ecological Modelling, 2018, vol. 384, issue C, 63-74

Abstract: Evaluating stochastic abiotic factors and their combined effects on fish and wildlife populations have been challenging in environmental sciences. Contributing to this challenge is the paucity of data describing how observations made on individuals related to exposure to chemical compounds ultimately effect population vital rates, and how this exposure interacts with other abiotic drivers. Using three smallmouth bass populations in Pennsylvania as a case study, we explored both single-factor and combined effects of water temperature, flow velocity and chemical exposure on populations through a model simulation. Although there are many pathways through which chemicals can affect population vital rates, we focused on one where chemical exposure leads to reduced reproduction. Among the three populations considered, two (the Juniata and Susquehanna populations) have experienced adverse health, including the potential adverse effects of environmental stress and chemical contamination that may cause disease and mortality of young-of-year (YOY), various skin lesions and a high prevalence of intersex or testicular oocytes in adults. The third population (The Alleghany population) has not encountered mortality events of YOY and intersex prevalence is much lower. The simulation involved projecting populations using a length-based model under different environmental conditions. In the simulations, abiotic factors influenced population dynamics through their impacts on growth, survival and recruitment. Response to the same environmental stress varied by population and life-stage of the species. Factors affecting young adult and adult life-stages had great influence on proportional stock density (PSD) and the probability of having PSD within the suggested range (PSD probability). Increases in water temperature had a negative effect and dominant role in the combined effect on population size structure (e.g., PSD and PSD probability) – increases in flow velocity during the spring season also had a negative effect on abundance. Populations with high recruitment rates sustained relatively large population size, even under high water temperature and/or high flow velocity, which suggests that factors and management strategies that benefit recruitment (such as reduced chemical contaminants) may compensate for the negative effects of warming water temperatures and high spring flow velocity on population size.

Keywords: Growth; Mortality; Flow velocity; Temperature; Plasma vitellogenin; Proportional stock density (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380018302205
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:384:y:2018:i:c:p:63-74

DOI: 10.1016/j.ecolmodel.2018.06.015

Access Statistics for this article

Ecological Modelling is currently edited by Brian D. Fath

More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecomod:v:384:y:2018:i:c:p:63-74