A mechanistic model of coral bleaching due to temperature-mediated light-driven reactive oxygen build-up in zooxanthellae
Mark E. Baird,
Mathieu Mongin,
Farhan Rizwi,
Line K. Bay,
Neal E. Cantin,
Monika Soja-Woźniak and
Jennifer Skerratt
Ecological Modelling, 2018, vol. 386, issue C, 20-37
Abstract:
Mass coral bleaching has emerged in the 21st century as the greatest threat to the health of the world's reefs. A sophisticated process understanding of bleaching at the polyp scale has now been achieved through laboratory and field studies, but this knowledge is yet to be applied in mechanistic models of shelf-scale reef systems. In this study we develop a mechanistic model of the coral-symbiont relationship that considers temperature-mediated build-up of reactive oxygen species due to excess light, leading to zooxanthellae expulsion. The model explicitly represents the coral host biomass, as well as zooxanthellae biomass, intracellular pigment concentration, nutrient status, and the state of reaction centres and the xanthophyll cycle. Photophysiological processes represented include photoadaptation, xanthophyll cycle dynamics, and reaction centre state transitions. The mechanistic model of the coral-symbiont relationship is incorporated into a ∼1 km resolution coupled hydrodynamic – biogeochemical model that encompasses the entire ∼2000 km length of the Great Barrier Reef. A simulation of the 2016 bleaching event shows the model is able to capture the broadscale features of the observed bleaching, but fails to capture bleaching on offshore reefs due to the model's grid being unable to resolve the bathymetry of shallow platforms surrounded by deep water. To further analyse the model behaviour, a ∼200 m resolution nested simulation of Davies Reef (18°49′ S, 147°38′ E) is undertaken. We use this nested model to demonstrate the depth gradient in zooxanthellae response to thermal stress. Finally, we discuss the uncertainties in the bleaching model, which lie primarily in quantifying the link between reactive oxygen build-up and the expulsion process. Through the mechanistic representation of environmental forcing, this model of coral bleaching applied in realistic environmental conditions has the potential to generate more detailed predictions than the presently-available satellite-based coral bleaching metrics, and can be used to evaluate proposed management strategies.
Keywords: Symbiodinium; Mass bleaching; Biogeochemical model; Climate change; Coral mortality; Great Barrier Reef (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380018302485
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:386:y:2018:i:c:p:20-37
DOI: 10.1016/j.ecolmodel.2018.07.013
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().