EconPapers    
Economics at your fingertips  
 

A squeeze in the suitable fire interval: Simulating the persistence of fire-killed plants in a Mediterranean-type ecosystem under drier conditions

Julia Henzler, Hanna Weise, Neal J. Enright, Susanne Zander and Britta Tietjen

Ecological Modelling, 2018, vol. 389, issue C, 41-49

Abstract: Mediterranean-type ecosystems (MTEs) harbor an exceptionally high biodiversity of vascular plants. At the same time, climatic conditions in many MTE regions are projected to become both drier and hotter, and fire intervals shorter. The Interval Squeeze conceptual model integrates the potential effects of a changing climate and fire regimes on perennial plant population persistence and postulates that warmer, drier conditions will negatively affect multiple plant demographic processes. Dependent on species-specific traits, the required fire intervals that allow for population persistence might become longer, while projected future fire intervals are shorter, leading to a potential mismatch. However, conceptual models are per se not able to quantify outcomes of multiple stochastic processes or to simulate temporal dynamics. Here, we develop a simple, process-based model for a fire-sensitive woody plant species to evaluate the response of demographic processes to future climatic conditions and to quantify the potential impact also of future changes in fire interval. This allowed us to assess key assumptions of the interval squeeze model, particularly in relation to demographic drivers.

Keywords: Interval squeeze; Climate change; Mediterranean-type ecosystem; Simulation model; Fire-ecology; Drought impacts (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380018303338
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:389:y:2018:i:c:p:41-49

DOI: 10.1016/j.ecolmodel.2018.10.010

Access Statistics for this article

Ecological Modelling is currently edited by Brian D. Fath

More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecomod:v:389:y:2018:i:c:p:41-49