A thermodynamic model for plant growth, validated with Pinus sylvestris data
F. Attorre,
E. Sciubba and
M. Vitale
Ecological Modelling, 2019, vol. 391, issue C, 53-62
Abstract:
Plants are open, irreversible and non-equilibrium systems that live via mass- and energy exchanges with the environment, and therefore, are amenable to a thermodynamic treatment: in fact, they may be considered “energy converters”, because their metabolism is nothing else than a controlled ability to transform energy from one form (solar) into another (chemical energy suitable to cell metabolism) and to activate and maintain reactions at cellular- and molecular level -promoting the plant growth. This paper presents an original model based on mass conservation and on the First- and Second Law of Thermodynamics, which results in a set of equations that allow for the calculation of the Primary Productivity (NPP) and consequently lead to a measure of the plant growth. The model is lumped, steady-state and totally deterministic, because no primary process is modelled in detail: the control volume is a portion of the universe that contains the plant and its immediate surroundings (atmosphere and the relevant portion of the soil), and the solution is strongly depending on the imposed boundary conditions. In such a formulation, the tree is considered as a non-equilibrium system evolving at a steady rate, and the only implicit assumption is the local equilibrium hypothesis. The general evolution equations are derived, and their steady-state form is analysed in detail. The approach is based on the calculation of the exergy in- and outflows from the control volume. Based on reasonably accurate empirical data, the exergy budget shows that the overall exergy conversion efficiency is quite low in plants and is very sensitive to even small changes in the environmental condition and to the adopted evapotranspiration model, as it would have been expected. The model is applied to a mature specimen of Pinus sylvestris and the results are compared with some literature data: despite neglecting the real chemo-physical details, the model reproduces the most salient characters of the tree growth. The sensitivity of the results to the tree age as well to the main model parameters is also calculated. The application of the same model to different species may reveal asymmetries in the “adaptability” of certain genotypes to different environments. On the more specific engineering side, the model may see an immediate application in the estimate of CO2 capture by plants.
Keywords: Exergy analysis; Non-equilibrium systems; Biological systems; Plant growth model (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380018303594
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:391:y:2019:i:c:p:53-62
DOI: 10.1016/j.ecolmodel.2018.10.022
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().