Modelling leaf coloration dates over temperate China by considering effects of leafy season climate
Guohua Liu,
Xiaoqiu Chen,
Yongshuo Fu and
Nicolas Delpierre
Ecological Modelling, 2019, vol. 394, issue C, 34-43
Abstract:
Current process-based models of autumn phenophases are generally based on autumn temperature and/or photoperiod cues. The dependence of autumn phenology on environmental conditions occurring throughout the leafy season has been overlooked. In this study, we incorporated the effect of leafy season temperature and precipitation in process-based models with the aim to improve the modelling of autumn phenology. We tested the ability of three existing and three new autumn phenology models in predicting the occurrence of leaf coloration of four deciduous tree species during 1981–2012 across temperate China. The results show that the models taking the effects of both the leafy season temperature and low precipitation into account performed best over both calibration and validation data. Compared with existing autumn phenological models, the best models predict that the potential delay of autumn phenology in a warmer world is modulated by the impact of leafy season climate on leaf senescence in a complex way: increased leafy season temperature tends to hasten the occurrence of leaf coloration while low leafy season precipitation tends to delay it. Additionally, we tested the hypothesis of a local adaptation of tree phenology through the evaluation of site-specific model parameterizations. Local fittings of the critical temperature sums in all models did not improve the model ability to simulate the occurrence of leaf coloration, which suggests either that local adaptation of leaf senescence process is virtually non-existent across the populations considered or that the genetic variation of leaf coloration traits among populations cannot be detected by our models. Our findings highlighted the importance of leafy season climate in autumn phenology modelling and its possible offset effect in the response of autumn senescence to future warming.
Keywords: Leaf coloration; Process-based models; Leafy season temperature; Leafy season precipitation; Local adaptation of leaf senescence (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380018304319
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:394:y:2019:i:c:p:34-43
DOI: 10.1016/j.ecolmodel.2018.12.020
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().