EconPapers    
Economics at your fingertips  
 

Water eutrophication assessment relied on various machine learning techniques: A case study in the Englishmen Lake (Northern Spain)

P.J. García Nieto, E. García-Gonzalo, J.R. Alonso Fernández and C. Díaz Muñiz

Ecological Modelling, 2019, vol. 404, issue C, 91-102

Abstract: Algal atypical productivity, also called eutrophication, is a process where the phosphorus content in the water, together with aquatic flora, increases, causing high Chlorophyll levels and affecting the water quality and its possible applications. Therefore, it is important to be able to anticipate such circumstance to avoid subsequent hazards. In this paper, a model that estimates the conditions where an abnormal growth of algae in reservoirs and lakes takes place is built. This method combines artificial bee colony and support vector machines algorithms to predict the eutrophication taking into account physical-chemical and biological data sampled in the Englishmen Lake and posterior analysis in a laboratory. The support vector machines parameters are tuned by means of the artificial bee colony algorithm, improving the accuracy of the procedure. For comparison sake, two other methods have been used to construct additional models, the M5 model tree and multilayer perceptron network. Two objectives are covered by this study: the forecasting of the algal proliferation by means of the model and, the ranking of the relative importance of the independent variables. Indeed, coefficients of determination of 0.92 for the Chlorophyll and 0.90 for the Total phosphorus concentrations were obtained using this hybrid method that optimizes the regression parameters. Furthermore, the results obtained with M5 model tree and multilayer perceptron network techniques were clearly worse. Finally, conclusions of this work are drawn in the final section.

Keywords: Support vector machine (SVM); Artificial bee colony (ABC); Artificial neural networks (ANNs); M5 model tree; Algal atypical productivity in lakes; Regression analysis (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380019301061
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:404:y:2019:i:c:p:91-102

DOI: 10.1016/j.ecolmodel.2019.03.009

Access Statistics for this article

Ecological Modelling is currently edited by Brian D. Fath

More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecomod:v:404:y:2019:i:c:p:91-102