Modelling damage occurrence by snow and wind in forest ecosystems
Olalla Díaz-Yáñez,
Blas Mola-Yudego and
José Ramón González-Olabarria
Ecological Modelling, 2019, vol. 408, issue C, -
Abstract:
Snow and wind damages are one of the major abiotic disturbances playing a major role in forest ecosystems and affecting both stand dynamics and forest management decisions. This study analyses the occurrence of wind and snow damage on Norwegian forests, based on data from four consecutive forest inventories (1995–2014). The methodological approach is based on boosted regression trees, a machine learning method aiming to demonstrate the effects of different variables on damage probability and their interactions as well as to spatialize damage occurrence to make predictions. In total, 313 models are fitted to detect trends, interactions and effects among the variables. The main variables associated with damage occurrence are consistent across all the models and include: latitude, altitude and slope (related to site and location), and tree density, mean diameter and height (related to forest characteristics). The results show that stand dominant height is a key variable in explaining damage probability, whereas stand slenderness has a limited effect. More heterogeneous forest structures make birch dominated stands more resistant to damage. Finally, the models are translated into occurrence maps, to provide landscape-level information on snow and wind damage hazard. Further application of the models can be oriented towards assessing the probability of damage for alternate stand management scenarios.
Keywords: Risk modelling; Machine learning; Boosted regression trees; Forest management (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380019302492
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:408:y:2019:i:c:6
DOI: 10.1016/j.ecolmodel.2019.108741
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().