EconPapers    
Economics at your fingertips  
 

Available and missing data to model impact of climate change on European forests

Paloma Ruiz-Benito, Giorgio Vacchiano, Emily R. Lines, Christopher P.O. Reyer, Sophia Ratcliffe, Xavier Morin, Florian Hartig, Annikki Mäkelä, Rasoul Yousefpour, Jimena E. Chaves, Alicia Palacios-Orueta, Marta Benito-Garzón, Cesar Morales-Molino, J. Julio Camarero, Alistair S. Jump, Jens Kattge, Aleksi Lehtonen, Andreas Ibrom, Harry J.F. Owen and Miguel A. Zavala

Ecological Modelling, 2020, vol. 416, issue C

Abstract: Climate change is expected to cause major changes in forest ecosystems during the 21st century and beyond. To assess forest impacts from climate change, the existing empirical information must be structured, harmonised and assimilated into a form suitable to develop and test state-of-the-art forest and ecosystem models. The combination of empirical data collected at large spatial and long temporal scales with suitable modelling approaches is key to understand forest dynamics under climate change. To facilitate data and model integration, we identified major climate change impacts observed on European forest functioning and summarised the data available for monitoring and predicting such impacts. Our analysis of c. 120 forest-related databases (including information from remote sensing, vegetation inventories, dendroecology, palaeoecology, eddy-flux sites, common garden experiments and genetic techniques) and 50 databases of environmental drivers highlights a substantial degree of data availability and accessibility. However, some critical variables relevant to predicting European forest responses to climate change are only available at relatively short time frames (up to 10-20 years), including intra-specific trait variability, defoliation patterns, tree mortality and recruitment. Moreover, we identified data gaps or lack of data integration particularly in variables related to local adaptation and phenotypic plasticity, dispersal capabilities and physiological responses. Overall, we conclude that forest data availability across Europe is improving, but further efforts are needed to integrate, harmonise and interpret this data (i.e. making data useable for non-experts). Continuation of existing monitoring and networks schemes together with the establishments of new networks to address data gaps is crucial to rigorously predict climate change impacts on European forests.

Keywords: climatic extremes; data accessibility; data integration; drivers; forest responses to climate change; harmonisation; open access (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380019303783
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:416:y:2020:i:c:s0304380019303783

DOI: 10.1016/j.ecolmodel.2019.108870

Access Statistics for this article

Ecological Modelling is currently edited by Brian D. Fath

More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecomod:v:416:y:2020:i:c:s0304380019303783