A Bayesian network approach to refining ecological risk assessments: Mercury and the Florida panther (Puma concolor coryi)
John F. Carriger and
Mace G. Barron
Ecological Modelling, 2020, vol. 418, issue C
Abstract:
Traditionally hazard quotients (HQs) have been computed for ecological risk assessment, often without quantifying the underlying uncertainties in the risk estimate. We demonstrate a Bayesian network approach to quantitatively assess uncertainties in HQs using a retrospective case study of dietary mercury (Hg) risks to Florida panthers (Puma concolor coryi). The Bayesian network was parameterized, using exposure data from a previous Monte Carlo-based assessment of Hg risks (Barron et al., 2004. ECOTOX 13:223), as a representative example of the uncertainty and complexity in HQ calculations. Mercury HQs and risks to Florida panthers determined from a Bayesian network analysis were nearly identical to those determined using the prior Monte Carlo probabilistic assessment and demonstrated the ability of the Bayesian network to replicate conventional HQ-based approaches. Sensitivity analysis of the Bayesian network showed greatest influence on risk estimates from daily ingested dose by panthers and mercury levels in prey, and less influence from toxicity reference values. Diagnostic inference was used in a high-risk scenario to demonstrate the capabilities of Bayesian networks for examining probable causes for observed effects. Application of Bayesian networks in the computation of HQs provides a transparent and quantitative analysis of uncertainty in risks.
Keywords: Bayesian networks; Terrestrial risk assessment; Mercury; Florida panther; Dynamic discretization; Monte Carlo analysis (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380019304193
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:418:y:2020:i:c:s0304380019304193
DOI: 10.1016/j.ecolmodel.2019.108911
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().