EconPapers    
Economics at your fingertips  
 

Spatial estimation of outdoor NO2 levels in Central London using deep neural networks and a wavelet decomposition technique

Sheen Mclean Cabaneros, John Kaiser Calautit and Ben Hughes

Ecological Modelling, 2020, vol. 424, issue C

Abstract: Outdoor air pollution remains a major environmental threat to the public, especially those who reside in highly urbanised areas. Recent studies have revealed the effectiveness of early-warning mechanisms that enable the public reduce their exposure to air pollutants. This highlights the need for accurate air quality forecasts. However, air quality in many developing and highly urbanised countries remains unmonitored. Hence, a novel spatiotemporal interpolation modelling approach based on a deep learning and wavelet pre-processing technique was proposed in this paper. In more detail, Long Short-term Memory (LSTM) neural networks and Discrete Wavelet Transformation (DWT) were utilised to model the spatial variability of hourly NO2 levels at six urban sites in Central London, the United Kingdom. The models were trained using only the NO2 concentration data from the neighbouring sites. Benchmark models such as plain LSTM and Multilayer Perceptron (MLP) models were also developed to validate the effectiveness of the proposed models. The proposed wavelet-based spatiotemporal models were found to provide superior forecasting results, explaining 77% to 93% of the variability of the actual NO2 concentration levels at most sites. The overall results reveal the very promising potential of the proposed models for the spatiotemporal characterisation of outdoor air pollution.

Keywords: Air pollution forecasting; Artificial neural networks; Wavelet decomposition; Long short-term memory units; Deep learning; Spatial interpolation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380020300892
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:424:y:2020:i:c:s0304380020300892

DOI: 10.1016/j.ecolmodel.2020.109017

Access Statistics for this article

Ecological Modelling is currently edited by Brian D. Fath

More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecomod:v:424:y:2020:i:c:s0304380020300892