Modelling changes in trophic and structural impacts of alien ecosystem engineers on a rocky-shore island
Saachi Sadchatheeswaran,
George M Branch,
Lynne J Shannon,
Coleen L Moloney,
Marta Coll and
Tamara B Robinson
Ecological Modelling, 2020, vol. 433, issue C
Abstract:
Between 1980 and 2012, successive arrivals by three alien ecosystem engineers on a rocky shore community at Marcus Island on the west coast of South Africa led to substantial changes in species composition and diversity. An ecosystem analysis of this open intertidal system was developed using Ecopath with Ecosim to determine the impacts of these aliens and the services they provide on the native community. A baseline Ecopath model of the community in 2015 was generated using values of biomass, production/biomass, consumption/biomass and the dietary composition of 30 functional groups. Ecosim, a time-dynamic modelling routine, was then used to simulate the changes in biomass of native species. A 1980 model (pre-invasion) was constructed and 22 simulations were run up to 2015 by systematically adding (1) biomass time series for non-native species; (2) relative biomass time series for native species; (3) mediation functions that mimicked biomass impacts due to changes in substrate, shelter and feeding grounds created by the alien ecosystem engineers; and (4) the effects of wave action as a source of mortality. Positive or negative influences of these ecological processes on diversity and the final biomasses of all groups in 2015 were assessed. Trophic impacts by the alien species affected diversity and biomass at the end of all simulations, but the addition of shelter or a combination of all three ecosystem services provided by ecosystem engineers (shelter, substrate and feeding grounds) resulted in 2015 model ecosystems that most closely matched the diversity and individual group biomasses empirically measured on Marcus Island in 2015. Wave action had only a minor impact. Marcus Island's rocky shore community was therefore driven mainly by the fixed input of alien species biomass and made more realistic by the incorporation of their ecosystem services. However, structural complexity and zonation, explored in a follow-up paper invoking spatial modelling, need to be represented for a more complete realisation of the ecosystem.
Keywords: Barnacles; Ecopath-with-Ecosim; Ecosystem-engineer; Intertidal; Invasive; Mussels (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380020302970
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:433:y:2020:i:c:s0304380020302970
DOI: 10.1016/j.ecolmodel.2020.109227
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().