A minimalistic model of vegetation physiognomies in the savanna biome
I.V. Yatat Djeumen,
Y. Dumont,
A. Doizy and
P. Couteron
Ecological Modelling, 2021, vol. 440, issue C
Abstract:
We present and analyze a model aiming at recovering, as dynamical outcomes of fire-mediated tree–grass interactions, the wide range of vegetation physiognomies observable in the savanna biome along rainfall gradients at regional/continental scales. The model is based on two ordinary differential equations (ODE), for woody and grass biomass. It is parameterized from literature with respect to the African context and retains mathematical tractability, since we restricted it to the main processes, notably tree–grass asymmetric interactions (either facilitative or competitive) and the grass-fire feedback. We used a fully qualitative analysis to derive all possible long term dynamics and express them in a bifurcation diagram in relation to mean annual rainfall and fire frequency. We delineated domains of monostability (forest, grassland, savanna), of bistability (e.g. forest–grassland or forest–savanna) and even tristability. Notably, we highlighted regions in which two savanna equilibria may be jointly stable (possibly in addition to forest or grassland). We verified that common knowledge about decreasing woody biomass with increasing fire frequency is verified for all levels of rainfall, contrary to previous attempts using analogous ODE frameworks. Thus, our framework appears able to render more realistic and diversified outcomes than often thought of regarding ODE. Our model can help figure out the ongoing dynamics of savanna vegetation in large territories for which local data are sparse or absent. To explore the bifurcation diagram with different combinations of the model parameters, we have developed a user-friendly R-Shiny application freely available at : https://gitlab.com/cirad-apps/tree-grass.
Keywords: Forest; Savanna; Grassland; Mean annual rainfall; Fires; Ordinary differential equations; Alternative stable states; Qualitative analysis; Sensitivity analysis; Bifurcation diagram; R shiny app (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380020304452
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:440:y:2021:i:c:s0304380020304452
DOI: 10.1016/j.ecolmodel.2020.109381
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().