EconPapers    
Economics at your fingertips  
 

How does leaf functional diversity affect the light environment in forest canopies? An in-silico biodiversity experiment

Elena Plekhanova, Pascal A. Niklaus, Jean-Philippe Gastellu-Etchegorry and Gabriela Schaepman-Strub

Ecological Modelling, 2021, vol. 440, issue C

Abstract: The interaction of shortwave radiation with vegetation drives basic processes of the biosphere, such as primary productivity, species interactions through light competition, and energy fluxes between the atmosphere, vegetation, and soil. Here, we aim to understand the effects of leaf functional trait diversity on canopy light absorption. We focus on the diversity of three key functional traits that influence the light-canopy interaction: leaf area index (LAI), leaf angle distribution (LAD) and leaf optical properties (LOP). We used a 3D radiative transfer model to perform an in-silico biodiversity experiment to study the effects of leaf functional diversity on a light proxy for productivity (the fraction of absorbed photosynthetically active radiation (FAPAR)) and net radiation (shortwave albedo). We found that diverse canopies had lower albedo and higher FAPAR than the average of the corresponding monoculture values. In mixtures, FAPAR was unequally re-distributed between trees with distinct traits: some plant functional types absorbed more light and some plant functional types absorbed less than in monocultures. The net biodiversity effect on absorptance was greater when combining plant functional types with more distinct leaf traits. Our results support the mechanistic understanding of overyielding effects in functionally diverse canopies and may partially explain some of the growth-promoting mechanisms in biodiversity-ecosystem functioning experiments. They can further help to account for biodiversity effects in climate models.

Keywords: Biodiversity effect; Functional diversity; Plant traits; Radiative transfer modelling; Light; Energy budget (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380020304580
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:440:y:2021:i:c:s0304380020304580

DOI: 10.1016/j.ecolmodel.2020.109394

Access Statistics for this article

Ecological Modelling is currently edited by Brian D. Fath

More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecomod:v:440:y:2021:i:c:s0304380020304580