EconPapers    
Economics at your fingertips  
 

Bridging mechanistic conceptual models and statistical species distribution models of riverine fish

Bogdan Caradima, Andreas Scheidegger, Jakob Brodersen and Nele Schuwirth

Ecological Modelling, 2021, vol. 457, issue C

Abstract: Statistical species distribution models (SDMs) are widely used to quantify how taxa respond to environmental conditions and to predict their distribution. However, the application of SDMs to freshwater fish taxa is complicated by the active dispersal of fish taxa through river networks, and the species- and habitat-dependent observation process (i.e., the sampling method and effort) required to accurately sample their distributions. Many studies have applied presence-absence models (PAMs) to fish taxa, while more recent studies have proposed zero-inflated models (ZIMs) to account for count observations with many zeroes. However, relatively few studies have incorporated the observation process into the model structure, which would facilitate the combination of data from various monitoring programs that differ in their observation process. In this study, we use conceptual models to identify potentially dominant natural and anthropogenic environmental conditions with a direct, mechanistic effect on the distributions of freshwater fish taxa in Switzerland, a region with a large range of environmental conditions, from alpine streams that are mainly affected by hydromorphological alterations to lowland streams in densely populated areas with intensive agricultural land use. Moreover, numerous barriers impede fish migration along the entire river network. Using combined data from two fish monitoring programs in Switzerland, we applied an exhaustive cross-validation procedure to select a set of environmental variables with the highest (out-of-sample) predictive performance for the PAM and ZIM for fish density (individuals/m2) of the seven most prevalent fish taxa (Salmo spp., Cottus spp., Squalius spp., Barbatula spp., Barbus spp., Phoxinus spp., Gobio spp.). We used these variables to develop a PAM and ZIM for each taxon that accounts for differences in sampling methods and sampling effort. We quantified the quality of fit during calibration using all samples and predictive performance during 5-fold cross-validation of each model.

Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380021002386
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:457:y:2021:i:c:s0304380021002386

DOI: 10.1016/j.ecolmodel.2021.109680

Access Statistics for this article

Ecological Modelling is currently edited by Brian D. Fath

More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecomod:v:457:y:2021:i:c:s0304380021002386