EconPapers    
Economics at your fingertips  
 

Feasibility conditions of ecological models: Unfolding links between model parameters

Mohammad AlAdwani and Serguei Saavedra

Ecological Modelling, 2022, vol. 466, issue C

Abstract: Over more than 100 years, ecological research has been striving to derive internal and external conditions compatible with the coexistence of a given group of interacting species. To address this challenge, numerous studies have focused on developing ecological models and deriving the necessary conditions for species coexistence under equilibrium dynamics, namely feasibility. However, due to mathematical limitations, it has been impossible to derive analytic expressions for equilibria locations if the isocline equations have five or more roots, which can be easily reached even in 2-species models. Here, we propose a general formalism to obtain the set of analytical conditions of feasibility for any polynomial population dynamics model of any dimension without the need to solve for the equilibrium locations. We illustrate the application of our methodology by showing how it is possible to derive mathematical relationships between model parameters in modified Lotka–Volterra models with functional responses and higher-order interactions (model systems with at least five equilibrium points)—a task that is impossible to do with simulations. This work unlocks the opportunity to increase our understanding of how parameters and their interconnections affect our conclusions of species coexistence as a function of model choice.

Keywords: Ecological systems; Species coexistence; Multivariate polynomials; Model parameters; Impossibility theorem; Nonlinear functional responses; Higher-order interactions (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380022000266
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:466:y:2022:i:c:s0304380022000266

DOI: 10.1016/j.ecolmodel.2022.109900

Access Statistics for this article

Ecological Modelling is currently edited by Brian D. Fath

More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecomod:v:466:y:2022:i:c:s0304380022000266