EconPapers    
Economics at your fingertips  
 

Separating acoustic signal into underlying behaviors with self-exciting point process models

Eliza M. Grames, Piper L. Stepule, Susan Z. Herrick, Benjamin T. Ranelli and Chris S. Elphick

Ecological Modelling, 2022, vol. 468, issue C

Abstract: In animal communication, signals can arise endogenously or in response to cues, such as signals by conspecifics. When one signal serves dual functions, such as in birds that use the same song for mate attraction and territorial defense, the underlying reason for a vocalization cannot be determined without direct observations, and even then, may be hard to discern. We present an inhomogeneous, self-exciting point process model to estimate the underlying reasons for why an individual initiates a signal. In our application of these models, endogenous signals are assumed to arise at a constant rate, but each signal can also instigate (“self-excite”) additional signals by conspecific individuals. When applied to bullfrog (Rana catesbeiana) calls and ovenbird (Seiurus aurocapilla) songs, our model performs as well as a homogeneous point process model typically used to describe count data, while providing additional detail on the underlying motivations for signals. Although we apply the models to acoustic signals, our model can be applied to any self-exciting process and can be extended to include spatiotemporal dynamics in signals.

Keywords: Acoustic signals; Self-exciting point process; Inhomogeneous point process model; Singing behavior; Song function (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380022000837
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:468:y:2022:i:c:s0304380022000837

DOI: 10.1016/j.ecolmodel.2022.109965

Access Statistics for this article

Ecological Modelling is currently edited by Brian D. Fath

More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecomod:v:468:y:2022:i:c:s0304380022000837