EconPapers    
Economics at your fingertips  
 

Insights on biodiversity drivers to predict species richness in tropical forests at the local scale

Rubén G. Mateo, Gabriel Arellano, Virgilio Gómez-Rubio, J. Sebastián Tello, Alfredo F. Fuentes, Leslie Cayola, M. Isabel Loza, Victoria Cala and Manuel J. Macía

Ecological Modelling, 2022, vol. 473, issue C

Abstract: Disentangling the relative importance of different biodiversity drivers (i.e., climate, edaphic, historical factors, or human impact) to predict plant species richness at the local scale is one of the most important challenges in ecology. Biodiversity modelling is a key tool for the integration of these drivers and the predictions generated are essential, for example, for climate change forecast and conservation planning. However, the reliability of biodiversity models at the local scale remains poorly understood, especially in tropical species-rich areas, where they are required. We inventoried all woody plants with stems ≥ 2.5 cm in 397 plots across the Andes-Amazon gradient. We generated and mapped 19 uncorrelated biodiversity drivers at 90 m resolution, grouped into four categories: microclimatic, microtopographic, anthropic, and edaphic. In order to evaluate the importance of the different categories, we grouped biodiversity drivers into four different clusters by categories. For each of the four clusters of biodiversity drivers, we modelled the observed species richness using two statistical techniques (random forest and Bayesian inference) and two modelling procedures (including or excluding a spatial component). All the biodiversity models produced were evaluated by cross-validation. Species richness was accurately predicted by random forest (Spearman correlation up to 0.85 and explained variance up to 67%). The results suggest that precipitation and temperature are important driving forces of species richness in the region. Nonetheless, a spatial component should be considered to properly predict biodiversity. This could reflect macroevolutionary underlying forces not considered here, such as colonization time, dispersal capacities, or speciation rates. However, the proposed biodiversity modelling approach can predict accurately species richness at the local scale and detailed resolution (90 m) in tropical areas, something that previous works had found extremely challenging. The innovative methodology presented here could be employed in other areas with conservation needs.

Keywords: Altitudinal gradient; Bayesian inference; Biodiversity patterns; Madidi region; Plant species richness; Random forest (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380022002344
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:473:y:2022:i:c:s0304380022002344

DOI: 10.1016/j.ecolmodel.2022.110133

Access Statistics for this article

Ecological Modelling is currently edited by Brian D. Fath

More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecomod:v:473:y:2022:i:c:s0304380022002344