Multi-model approach to integrate climate change impact on carbon sequestration potential of afforestation scenarios in Quebec, Canada
Isabelle Ménard,
Evelyne Thiffault,
Yan Boulanger and
Jean-François Boucher
Ecological Modelling, 2022, vol. 473, issue C
Abstract:
Afforestation of unproductive or currently non-forested territories can increase carbon land sinks and thus contribute to mitigate climate change. However, investments on large-scale afforestation could be risky because of the predicted effect of climate change on forest productivity of newly created plantations. The aim of this study was to assess the carbon sequestration and mitigation potential of afforestation scenarios with different species (Picea mariana, Picea glauca, Pinus banksiana, Pinus resinosa and Populus spp) on open woodlands and abandoned farmlands in the Province of Quebec (Canada) under different radiative forcing projections. We modelled carbon dynamics in these lands under three Representative Concentration Pathways projections (RCP 2.6, RCP 4.5, and RCP 8.5) over the 2021–2100 period. The forest gap model PICUS was used to model tree growth of afforested species as a function of the Representative Concentration Pathways 2.6, 4.5 and 8.5; these data were then used as input in the Carbon Budget Model – Canadian Forest Sector 3 to simulate the evolution of ecosystem carbon stocks and fluxes as a function of forest management and climate. Carbon transfer to harvested wood products, and carbon fluxes associated with product life cycles and substitution effects on markets, were also included in the analyses. Results showed that Pinus species responded more strongly to variations in radiative forcing than for the other simulated species. Overall, aboveground biomass was particularly altered by increased radiative forcing, which in turn reduced harvesting yield and transfers to wood processing and products. At the end of the simulation, despite the expected impacts of radiative forcing on ecosystems, afforestation scenarios on open woodlands with black spruce, white spruce, and jack pine can deliver carbon mitigation of 32% – 70% over the baseline scenario and 4% – 12% for red pine on abandoned farmlands and, hence, contribute to efforts to reduce GHG emissions, especially over the long term. Although climate change is expected to impact the growth of newly planted areas as part of afforestation efforts, the results of our study suggest that the choice of species to plant and the selected forest management strategy have a greater impact on carbon stocks than climate change itself. This study provides a better understanding of the dynamics of afforestation under climate change and whether investments in plantation can contribute to GHG reduction targets.
Keywords: Plantation; Climate change; Carbon sequestration; Open woodlands; Abandoned farmlands; Harvested wood products (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380022002459
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:473:y:2022:i:c:s0304380022002459
DOI: 10.1016/j.ecolmodel.2022.110144
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().