Low vulnerability of the Mediterranean antipatharian Antipathella subpinnata (Ellis & Solander, 1786) to ocean warming
Godefroid Mathilde,
Zeimes Tom,
Bramanti Lorenzo,
Romans Pascal,
Bo Marzia,
Toma Margherita,
Danis Bruno,
Dubois Philippe and
Guillaumot Charlène
Ecological Modelling, 2023, vol. 475, issue C
Abstract:
Antipatharians (black corals) are major components of mesophotic ecosystems in the Mediterranean Sea. The arborescent species Antipathella subpinnata has received particular attention as it is the most abundant and forms dense forests harbouring high levels of biodiversity. This species is currently categorized as “Near Threatened” in the IUCN Red List, due to increasing fishing pressure and bottom-trawling activities. Yet, the effects of ocean warming have never been investigated for this species, nor for any other antipatharians from temperate regions. Our study aimed at evaluating the effects of increasing seawater temperatures on A. subpinnata, by combining predictive distribution modelling with a physiological tolerance experiment. During the latter, we exposed A. subpinnata for 15 days to different temperature conditions spanning the current seasonal range to forecasted temperatures for 2100, while measuring biological endpoints such as oxygen consumption rates and different signs of stress (tissue necrosis, total antioxidant capacity). Unexpectedly, no stress was found at organism nor cellular level (wide thermal breadth) suggesting low susceptibility of this species to mid-term temperature increase. If the response to the 15-days heat stress is representative of the response to longer-term warming, ocean warming is unlikely to affect A. subpinnata. The species distribution model predicted the presence of A. subpinnata at depths that correspond to temperatures colder than its maximum thermal tolerance (as determined by the physiology experiment). This suggests that the presence of A. subpinnata at shallower depths is not limited by physiological constraints but by other ecological factors including interspecific competition.
Keywords: Antipatharia; Thermotolerance; Mesophotic; Mediterranean Sea; Physiology; Niche modelling (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380022003076
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:475:y:2023:i:c:s0304380022003076
DOI: 10.1016/j.ecolmodel.2022.110209
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().