Bumble bee pollination and the wildflower/crop trade-off: When do wildflower enhancements improve crop yield?
Bruno S. Carturan,
Nourridine Siewe,
Christina A. Cobbold and
Rebecca C. Tyson
Ecological Modelling, 2023, vol. 484, issue C
Abstract:
Populations of wild insect pollinators such as bumble bees are threatened worldwide, which compromises pollinator-dependent crop yields. Intentionally planting wildflower patches in agricultural landscapes can support these populations and increase the pollination of nearby crops via the “spillover effect” (i.e., the exporter hypothesis), but may also distract bees from the crops and reduce their pollination via the “Circe principle” (i.e., the aggregation hypothesis). Considering the potentially high costs of these management strategies and the necessity to support wild insect pollinators in the Anthropocene, there is a pressing need to provide simulation tools that can inform best practices for wildflower plantings in agro-ecosystems. We developed a spatially implicit ordinary differential equations (ODEs) model specifically designed to determine the optimal wildflower-to-crop ratio as a function of wildflower patch (i) attractiveness, (ii) nutritional benefits, and (iii) blooming period relative to the crop. The model represents the population dynamics of a bumble bee colony and floral resources (crop and wildflower) in the landscape and nest during one harvesting season. We conduct a full factorial simulation experiment to identify the optimal characteristics of the wildflower patch (i.e., blooming period, attractiveness, relative abundance) that maximise crop yield via the enhancement of the number of bees pollinating crop flowers in a fictional blueberry farm. Our results suggest that providing highly attractive and nutritive wildflower resources before and not during the crop blooming season is the most beneficial strategy. When both flower types are in competition, pollination services can decrease, either when wildflowers are too attractive, or if they provide less benefits to the bees than the crop due to a trade-off between resources quality versus quantity.
Keywords: Pollination service; Bumble bee; Ordinary differential equation system; Wildflower planting (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380023001783
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:484:y:2023:i:c:s0304380023001783
DOI: 10.1016/j.ecolmodel.2023.110447
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().