Ways to reduce or avoid juvenile-driven cycles in individual-based population models
S.A.L.M. Kooijman
Ecological Modelling, 2024, vol. 490, issue C
Abstract:
Feeding being linked to surface area and maintenance to volume causes juvenile-driven cycles in individual-based population models (IBM’s). This combination of traits induces self-synchronisation of individuals: at some low food level, small individuals can still grow, but large ones cannot. Since Dynamic Energy Budget (DEB) models have these features, which are well-tested for individuals in the Add_my_Pet collection, DEB-based population models have such juvenile-driven cycles in simple homogeneous reactors. These cycles are, however, not seen in practice. This paper explores ways to reduce or avoid such cycles in a realistic way, keeping the model as simple as possible, and comes with recommendations. Some of the fixes also repair related artefacts of too simple population models, such as competitive exclusion, the paradox of enrichment and merry-go-around. A size-dependent hazard, which is essential for species with many small offspring, and details on nutrition are unavoidable in realistic models for physiologically structured population dynamics.
Keywords: Dynamic energy budget theory; Thinning; Social interaction; Scatter in parameter values; Paradox of enrichment; Competitive exclusion (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380024000383
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:490:y:2024:i:c:s0304380024000383
DOI: 10.1016/j.ecolmodel.2024.110649
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().