EconPapers    
Economics at your fingertips  
 

The role of squid for food web structure and community-level metabolism

Rémy Denéchère, P. Daniël van Denderen and Ken H. Andersen

Ecological Modelling, 2024, vol. 493, issue C

Abstract: Squid differ from fish by their high growth rate, short life span, and feeding behavior. Their fast life strategy is thought to impose a high predation pressure on zooplankton, fish, and other squid preys, and a rapid transfer of energy to upper trophic levels of marine food webs. However, there is a lack of understanding of how squid’s fast life cycle affects the food-web structure, which is needed to project squid biomass across marine regions under shifting climatic conditions. Here, we examine the role of squid on community metabolism and biomass by collecting data on squid somatic growth and incorporating squid in a size- and trait-based fish community model. We show that squid have a 5 times higher average somatic growth rate than fish. Due to their high food demands, squid are constrained to regions of high pelagic secondary production. The presence of squid in these systems is associated with a reduction in total consumer biomass. This decline is caused by an increase in community-level respiration losses associated with squid. Our results indicate that squid might have a large impact on ecosystem structure even at relatively low standing stock biomass. Consequently, the recent proliferation of squid in ecosystems around the world is likely to have significant ecological and socio-economic impacts.

Keywords: FEISTY; Squid; Fish; Food-web; Size structure; Somatic growth rate (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380024001170
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:493:y:2024:i:c:s0304380024001170

DOI: 10.1016/j.ecolmodel.2024.110729

Access Statistics for this article

Ecological Modelling is currently edited by Brian D. Fath

More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecomod:v:493:y:2024:i:c:s0304380024001170