EconPapers    
Economics at your fingertips  
 

An integrated analysis for estimation of survival, growth, and movement of unmarked juvenile anadromous fish

Patti J. Wohner, Adam Duarte and James T. Peterson

Ecological Modelling, 2024, vol. 495, issue C

Abstract: Managers invest substantial resources to promote recovery of declining anadromous fish stocks. Recovery strategies are manifold and often include management actions intended to stimulate somatic growth, increase in-river survival, and motivate juvenile outmigration during favorable environmental conditions. Evaluating the efficacy of these management actions is difficult, however, because monitoring data that explicitly track individuals from egg deposition to juvenile outmigration are typically lacking. We developed an integrated population model that links two different and often collected types of anadromous fish monitoring data: spawning ground surveys and rotary screw trap juvenile catch data. The integrated model accounts for incomplete detection and uses the two sources of data to estimate juvenile demographic parameters in a multistate framework. We evaluated the model's performance using simulated data under a range of conditions typically encountered in similar surveys. Simulation results indicated that the model estimated juvenile survival, growth, and movement with no-to-minimal bias (i.e., ≥ 50 % of simulations ± 0–0.05). As an example case study, we fit the model to empirical fall-run Chinook Salmon (Oncorhynchus tshawytscha) monitoring data collected in California's Central Valley, U.S.A. In doing so, we evaluated the influence of environmental conditions (e.g., discharge, water temperature) and habitat availability on juvenile demographic rates. We demonstrated that through our integrated approach we could estimate state transition probabilities that are typically inestimable for naturally produced, unmarked juvenile fish when using traditional statistical approaches to analyze these types of monitoring data. Furthermore, the structure of our model can serve as a useful foundation for decision-support models within adaptive management programs by directly linking management actions, decision-support-model predictions, and monitoring.

Keywords: Adaptive management; Integrated population model; Monitoring; Salmon demographics; Simulation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380024001686
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:495:y:2024:i:c:s0304380024001686

DOI: 10.1016/j.ecolmodel.2024.110780

Access Statistics for this article

Ecological Modelling is currently edited by Brian D. Fath

More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecomod:v:495:y:2024:i:c:s0304380024001686