EconPapers    
Economics at your fingertips  
 

Interactive effects of climate change and human mobility on dengue transmission

Mohsin Khan, Tarteel Abdalgader, Michael Pedersen and Lai Zhang

Ecological Modelling, 2025, vol. 499, issue C

Abstract: The global escalation of vector-borne epidemics, particularly flaviviruses like dengue fever, presents a growing challenge. Contributing factors such as climate change and increased human mobility have expanded the vulnerability to dengue fever worldwide, yet the underlying mechanisms remain elusive. In this paper, we extend a two-patch dengue transmission model by incorporating the aquatic stage of mosquitoes and integrating the movement of host individuals between patches via a residence-time matrix. Through this approach, we derive the basic reproduction number and directly link it to climate change and human mobility. Our findings reveal bidirectional impacts of human mobility on dengue transmission: an increase in mobility from climatically unsuitable to suitable patches heightens the basic reproduction number, while the reverse pattern diminishes it. Moreover, an asymmetric mobility rate proves potentially more conducive to dengue spread than a symmetric pattern. When coupled with climate changes, asymmetric human mobility further exacerbates dengue fever transmission. These insights offer novel perspectives on the role of human mobility in dengue transmission dynamics and inform intervention strategies, particularly in urban settings where dengue epidemics are driven by human mobility.

Keywords: Dengue outbreak; Mathematical modelling; Human mobility; Climatic change (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380024003120
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:499:y:2025:i:c:s0304380024003120

DOI: 10.1016/j.ecolmodel.2024.110924

Access Statistics for this article

Ecological Modelling is currently edited by Brian D. Fath

More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecomod:v:499:y:2025:i:c:s0304380024003120