EconPapers    
Economics at your fingertips  
 

Mountain pine beetle spread in forests with varying host resistance

Micah Brush and Mark A. Lewis

Ecological Modelling, 2025, vol. 500, issue C

Abstract: In the last few decades, mountain pine beetle (MPB) have spread into novel regions in Canada. An important aspect seldom captured in models of MPB spread is host resistance. Lodgepole pine, the predominant host of MPB, varies in resistance across the landscape. There is evidence for a genetic component of resistance, as well as evidence that hosts in areas where MPB has not been present historically are at risk of increased susceptibility. In addition to the spatially varying resistance of the primary host species, the eastward spread of MPB has brought them into jack pine forests. Host resistance in jack pine remains uncertain, but experiments indicate jack pine could be a suitable host. We develop a model of pine beetle spread that links pine beetle population dynamics and forest structure and resistance. We find that beetle outbreaks in the model are characterized by large transient outbreaks that move through the forest. We show how the speed of these outbreaks changes with host resistance and find that biologically plausible values for host resistance are able to stop the wave from advancing. We also find that near the threshold of resistance where the wave is able to advance, small changes in host resistance dramatically decrease the severity of the outbreak. These results indicate that planting trees selected for higher MPB resistance on the landscape may be able to slow or even stop the local spread of MPB. In terms of further eastward spread, our results indicate future outbreaks may move more quickly and be more severe if novel lodgepole pine hosts are indeed more susceptible to beetle attacks, although more research is needed into the susceptibility of jack pine.

Keywords: Mountain pine beetle; Population spread; Invasive species; Forest management; Host susceptibility; Integrodifference equations (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380024002990
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:500:y:2025:i:c:s0304380024002990

DOI: 10.1016/j.ecolmodel.2024.110911

Access Statistics for this article

Ecological Modelling is currently edited by Brian D. Fath

More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-05-25
Handle: RePEc:eee:ecomod:v:500:y:2025:i:c:s0304380024002990